Decoding algorithms for Reed--Solomon (RS) codes are of great interest for both practical and theoretical reasons. In this paper, an efficient algorithm, called the modular approach (MA), is devised for solving the Welch--Berlekamp (WB) key equation. By taking the MA as the key equation solver, we propose a new decoding algorithm for systematic RS codes. For $(n,k)$ RS codes, where $n$ is the code length and $k$ is the code dimension, the proposed decoding algorithm has both the best asymptotic computational complexity $O(n\log(n-k) + (n-k)\log^2(n-k))$ and the smallest constant factor achieved to date. By comparing the number of field operations required, we show that when decoding practical RS codes, the new algorithm is significantly superior to the existing methods in terms of computational complexity. When decoding the $(4096, 3584)$ RS code defined over $\mathbb{F}_{2^{12}}$, the new algorithm is 10 times faster than a conventional syndrome-based method. Furthermore, the new algorithm has a regular architecture and is thus suitable for hardware implementation.
翻译:Reed-Solomon (RS) 代码解码算法对于实际和理论原因都非常感兴趣。 在本文中, 一种高效算法, 称为模块法(MA), 旨在解决Welch- Berlekamp (WB) 键方程式。 我们以MA 为关键方程式解析器, 提议了一套系统RS代码的新解码算法。 $(n)k( RS) RS 代码。 $(n) 美元为代码长度, $(k) 美元为代码维度, $( 4096) 和 美元为代码维度, 拟议的解码算算算法既具有最佳的简单计算计算复杂性 $(n- log) $(n- k) + (n- k)\ log@ 2(n- k) 和迄今取得的最小的恒定系数。 通过比较所需的实地操作数量, 我们表明, 在解码实用RS 代码时, 新的算法比计算复杂性的现有方法要高得多。 当解码( $( 4096) 和 3584 RS ) 定义的 $( $( $) $( $) $) $2\) 12) $( ) 美元) $( $) = * * * * * * * * $ $) 美元) 美元) 和新算法比常规的硬法要快10倍法要快10倍。