The Griddy Gibbs sampling was proposed by Ritter and Tanner (1992) as a computationally efficient approximation of the well-known Gibbs sampling method. The algorithm is simple and effective and has been used successfully to address problems in various fields of applied science. However, the approximate nature of the algorithm has prevented it from being widely used: the Markov chains generated by the Griddy Gibbs sampling method are not reversible in general, so the existence and uniqueness of its invariant measure is not guaranteed. Even when such an invariant measure uniquely exists, there was no estimate of the distance between it and the probability distribution of interest, hence no means to ensure the validity of the algorithm as a means to sample from the true distribution. In this paper, we show, subject to some fairly natural conditions, that the Griddy Gibbs method has a unique, invariant measure. Moreover, we provide $L^p$ estimates on the distance between this invariant measure and the corresponding measure obtained from Gibbs sampling. These results provide a theoretical foundation for the use of the Griddy Gibbs sampling method. We also address a more general result about the sensitivity of invariant measures under small perturbations on the transition probability. That is, if we replace the transition probability $P$ of any Monte Carlo Markov chain by another transition probability $Q$ where $Q$ is close to $P$, we can still estimate the distance between the two invariant measures. The distinguishing feature between our approach and previous work on convergence of perturbed Markov chain is that by considering the invariant measures as fixed points of linear operators on function spaces, we don't need to impose any further conditions on the rate of convergence of the Markov chain.


翻译:Ritter和Tanner(1992年)建议Griddy Gibbs抽样是众所周知的Gibbs抽样方法的计算效率近似法。算法简单而有效,并被成功地用于解决应用科学各个领域的问题。然而,算法的近似性质使它无法广泛使用:Griddy Gibs抽样方法产生的Markov链条一般无法反转,因此无法保证其惯性计量办法的存在和独特性。即使这种不变化计量办法独一存在,也没有估计它与利息概率分配之间的距离,因此无法确保算法作为真正分布的样本的有效性。在本文件中,我们根据一些相当自然的情况表明,Griddy Gibbs方法具有独特的特性:Griddy Gibs抽样方法在总体上无法逆转,因此,我们提供美元不变计量办法与从Gibbbs取样方法之间的距离和独特性。这些结果为使用Griddy Gibbs抽样方法提供了理论基础。我们还探讨了在轨迹的精确度测量措施中的敏感度,如果我们可能要以美元之间的精确度变化速度转换,那么,那么,那么,那么,那么,我们就将美元的精确值运值运值的值的值的值的值的值的值的值的值的值的值值值值值的值的值的值的值的值的值的值的值的值的值值的值的值的值的值的值的值的值的值的值的值的值的值的值的值的值的值的值的值的值的值的值的值的值的值的值的值的值的值之间的值的值的值的值的值的值的值的值的值的值的值的值的值的值的值的值的值之间的值之间的值之间的值的值之间的值之间的值的值的值的值的值的值之间的值之间的值之间的值之间的值之间的值的值之间的值。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
52+阅读 · 2020年9月7日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年5月19日
Arxiv
3+阅读 · 2018年10月5日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员