We study the complexity of cutting planes and branching schemes from a theoretical point of view. We give some rigorous underpinnings to the empirically observed phenomenon that combining cutting planes and branching into a branch-and-cut framework can be orders of magnitude more efficient than employing these tools on their own. In particular, we give general conditions under which a cutting plane strategy and a branching scheme give a provably exponential advantage in efficiency when combined into branch-and-cut. The efficiency of these algorithms is evaluated using two concrete measures: number of iterations and sparsity of constraints used in the intermediate linear/convex programs. To the best of our knowledge, our results are the first mathematically rigorous demonstration of the superiority of branch-and-cut over pure cutting planes and pure branch-and-bound.
翻译:我们从理论角度研究切割飞机和分支计划的复杂性。我们从理论角度研究切割飞机和分支计划的复杂性。我们给经验观察到的现象提供了一些严格的基础,即将切割飞机和分支化为分支和分支化框架可能比单独使用这些工具更有效率的数量级。特别是,我们给出了一般条件,使切割飞机战略和分支化计划在合并成分支和分支化时在效率上具有可观的指数优势。这些算法的效率通过两种具体措施来评估:中间线性/分流程序使用的迭代数和制约的广度。据我们所知,我们的结果是首次在数学上严格地展示了分支化和分支化的优于纯切割飞机和纯分化的优势。