Fekete's lemma is a well known result from combinatorial mathematics that shows the existence of a limit value related to super- and subadditive sequences of real numbers. In this paper, we analyze Fekete's lemma in view of the arithmetical hierarchy of real numbers by \citeauthor{ZhWe01} and fit the results into an information theoretic-context. We introduce special sets associated to super- and subadditive sequences and prove their effective equivalence to $\Sigma_1$ and $\Pi_1$. Using methods from the theory established by \citeauthor{ZhWe01}, we then show that the limit value emerging from Fekete's lemma is, in general, not a computable number. Furthermore, we characterize under which conditions the limit value can be computed and investigate the corresponding modulus of convergence. We close the paper by a discussion on how our findings affect common problems from information theory.
翻译:Fekete's lemma 是一组数学的一个众所周知的结果, 它表明存在与真实数字的超和次相加序列相关的限值。 在本文中, 我们根据实际数字的算术等级分析 Fekete 的 lemma, 并将结果纳入信息理论文本中。 我们引入了与超级和次相加序列相关的特殊组, 并证明它们与$\Sigma_ 1美元和$\Pi_ 1美元的有效等值。 使用\\ cite作者\hWe01} 确立的理论确定的方法, 我们然后显示 Fekete 的lemma 产生的限值一般不是一个可计算的数字。 此外, 我们确定在何种条件下可以计算限制值, 并调查相应的趋同模式。 我们通过讨论我们的结论如何影响信息理论的共同问题, 关闭了文件 。