We develop an approach to choice principles and their contrapositive bar-induction principles as extensionality schemes connecting an "intensional" or "effective" view of respectively ill-and well-foundedness properties to an "extensional" or "ideal" view of these properties. After classifying and analysing the relations between different intensional definitions of ill-foundedness and well-foundedness, we introduce, for a domain A, a codomain B and a "filter" T on finite approximations of functions from A to B, a generalised form GDC(A,B,T) of the axiom of dependent choice and dually a generalised bar induction principle GBI(A,B,T) such that: - GDC(A,B,T) intuitionistically captures the strength of $\bullet$ the general axiom of choice expressed as $\forall$a $\exists$b R(a, b) $\Rightarrow$ $\exists$$\alpha$ $\forall$a R(a, $\alpha$(a))) when T is a filter that derives point-wise from a relation R on A x B without introducing further constraints, $\bullet$ the Boolean Prime Filter Theorem / Ultrafilter Theorem if B is the two-element set Bool (for a constructive definition of prime filter), $\bullet$ the axiom of dependent choice if A = $\mathbb{N}$, $\bullet$ Weak K\"onig's Lemma if A = $\mathbb{N}$ and B = Bool (up to weak classical reasoning) - GBI(A,B,T) intuitionistically captures the strength of $\bullet$ G\"odel's completeness theorem in the form validity implies provability for entailment relations if B = Bool, $\bullet$ bar induction when A = $\mathbb{N}$, $\bullet$ the Weak Fan Theorem when A = $\mathbb{N}$ and B = Bool. Contrastingly, even though GDC(A,B,T) and GBI(A,B,T) smoothly capture several variants of choice and bar induction, some instances are inconsistent, e.g. when A is Bool^$\mathbb{N}$ and B is $\mathbb{N}$.
翻译:我们开发了一种选择原则及其反向约束性原则的方法,作为扩展性计划,将“强化”或“有效”观点分别连接到“扩展”或“理想”的属性。在分类和分析了对缺乏基础和基础性的不同强化定义之间的关系之后,我们为域A引入了一个“cdomain B”和“过滤器”关于从A到B的功能的有限接近值的“过滤器 ”,将依赖性选择的xxI(A,B,T)的“强化”或“有效”观点连接起来,将“基础性”的属性与“扩展”联系起来。在对“基础性”和“基础性”的定义进行分类和分析之后,我们引入了“基础性”的“美元 美元” (a,b) 美元和“基础性” 美元,如果B(a) 和“基础性”关系是从一个过滤器中引入了“B”的“B”和“美元”关系,当B(如果B) 和“B”关系是来自一个B级的。