We study downlink channel estimation in a multi-cell Massive multiple-input multiple-output (MIMO) system operating in time-division duplex. The users must know their effective channel gains to decode their received downlink data. Previous works have used the mean value as the estimate, motivated by channel hardening. However, this is associated with a performance loss in non-isotropic scattering environments. We propose two novel estimation methods that can be applied without downlink pilots. The first method is model-based and asymptotic arguments are utilized to identify a connection between the effective channel gain and the average received power during a coherence block. This second method is data-driven and trains a neural network to identify a mapping between the available information and the effective channel gain. Both methods can be utilized for any channel distribution and precoding. For the model-aided method, we derive closed-form expressions when using maximum ratio or zero-forcing precoding. We compare the proposed methods with the state-of-the-art using the normalized mean-squared error and spectral efficiency (SE). The results suggest that the two proposed methods provide better SE than the state-of-the-art when there is a low level of channel hardening, while the performance difference is relatively small with the uncorrelated channel model.


翻译:我们在一个在时间差异下方运行的多细胞多投入多输出(MIIMO)系统中研究下链接频道估计。 用户必须知道他们的有效渠道收益, 以解码他们收到的下链接数据。 先前的工程已经使用平均值作为估计数, 由频道加硬驱动。 但是, 这与非子分布环境中的性能损失有关。 我们建议了两种新的估计方法, 可以在不下链接试点项目的情况下应用。 第一个方法基于模型, 并且使用了无药可治的参数, 以确定有效渠道收益与统一区块中平均获得的能量之间的联系。 第二个方法是数据驱动的, 并训练神经网络, 以确定可用信息与有效通道收益之间的映射。 这两种方法都可以用于任何频道分布和预编译。 对于模型辅助方法, 我们用最大比率或零反向前编码来得出封闭式的表达方式。 我们用标准化的平均错误和光谱参数比较了拟议方法。 第二种方法是由数据驱动的神经元网络来定位, 两种与相对不同的频道的性能方法, 与相对而言, 与相对而言, 不同的是SEart 级的性能水平是比较低的轨道比较低的分析比较低的方法。

0
下载
关闭预览

相关内容

专知会员服务
56+阅读 · 2021年4月12日
专知会员服务
15+阅读 · 2021年3月4日
专知会员服务
52+阅读 · 2020年9月7日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
107+阅读 · 2020年5月15日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
5+阅读 · 2021年4月21日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员