We study an iterative discrete information production process (IPP) where we can extend ordered normalised vectors by new elements based on a simple affine transformation, while preserving the predefined level of inequality, G, as measured by the Gini index. Then, we derive the family of Lorenz curves of the corresponding vectors and prove that it is stochastically ordered with respect to both the sample size and G which plays the role of the uncertainty parameter. A case study of family income data in nine countries shows a very good fit of our model. Moreover, we show that asymptotically, we obtain all, and only, Lorenz curves generated by a new, intuitive parametrisation of the finite-mean Generalised Pareto Distribution (GPD) that unifies three other families, namely: the Pareto Type II, exponential, and scaled beta ones. The family is not only ordered with respect to the parameter G, but also, thanks to our derivations, has a nice underlying interpretation. Our result may thus shed new light on the genesis of this family of distributions.


翻译:我们研究了一种迭代离散信息生成过程(IPP),其中我们可以基于简单的仿射变换将有序的归一化向量扩展到新元素,同时保持由基尼指数测量的不平等水平 G。然后,我们推导了相应向量的洛伦兹曲线家族,并证明了它在样本大小和 G(扮演不确定性参数的角色)方面都随机有序。九个国家家庭收入数据的案例研究显示了我们模型的非常好的拟合性。此外,我们展示由于我们的推导,渐近地,我们得到了所有的、也只有新的直观参数化的具有有限均值的广义帕累托分布(GPD)生成的洛伦兹曲线,该分布统一了另外三个家族,包括 Pareto Type II,指数和缩放 beta 分布。该家族不仅在参数 G 方面有序,而且由于我们的推导,具有良好的基础解释。我们的结果可能为这个分布族的发展提供新的视角。

0
下载
关闭预览

相关内容

【华盛顿大学博士论文】因果模型的似然分析,190页pdf
专知会员服务
34+阅读 · 2022年11月14日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月31日
VIP会员
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员