Object detection for street-level objects can be applied to various use cases, from car and traffic detection to the self-driving car system. Therefore, finding the best object detection algorithm is essential to apply it effectively. Many object detection algorithms have been released, and many have compared object detection algorithms, but few have compared the latest algorithms, such as YOLOv5, primarily which focus on street-level objects. This paper compares various one-stage detector algorithms; SSD MobileNetv2 FPN-lite 320x320, YOLOv3, YOLOv4, YOLOv5l, and YOLOv5s for street-level object detection within real-time images. The experiment utilizes a modified Udacity Self Driving Car Dataset with 3,169 images. Dataset is split into train, validation, and test; Then, it is preprocessed and augmented using rescaling, hue shifting, and noise. Each algorithm is then trained and evaluated. Based on the experiments, the algorithms have produced decent results according to the inference time and the values of their precision, recall, F1-Score, and Mean Average Precision (mAP). The results also shows that YOLOv5l outperforms the other algorithms in terms of accuracy with a mAP@.5 of 0.593, MobileNetv2 FPN-lite has the fastest inference time among the others with only 3.20ms inference time. It is also found that YOLOv5s is the most efficient, with it having a YOLOv5l accuracy and a speed almost as quick as the MobileNetv2 FPN-lite. This shows that various algorithm are suitable for street-level object detection and viable enough to be used in self-driving car.


翻译:用于街头物体的街道物体检测可适用于各种使用案例, 从汽车和交通检测到自驾驶车系统。 因此, 找到最佳物体检测算法对于有效应用它至关重要 。 许多物体检测算法已经发布, 许多人已经比较了物体检测算法, 但很少有人比较了最新的算法, 如YOLOv5, 主要侧重于街道物体。 本文比较了各种单阶段检测算法; SSD MobNetv2 FPN- 利特 320x320, YOLOv3, YOLOv4, YOLOv5l, 和 YOLOv5s, 用于实时图像中街头物体检测。 实验使用了修改后的 Udality Odrivices 和3 169 图像。 数据集被分割成火车、 校验校验、 校验、 校验、 校验、 校验、 校验、 校验、 校验、 校验、 校、 校、 校、 校、 校、 校、 校、 校、 校、 校、 校、 校、 校、 校、 校、 校、 校、 校、 校、 校、 校、 校、 校、 校、 校、 校、 校、 校、 校、 校、 校、 校、 校、 校、 校、 校、 校、 、 校、 校、 校、 校、 都、 都、 都、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 等, 校、 校、 、 、 、 、 校、 、 等、 、 、 、 等、 、 、 、 、 、 、 、 、 、 、 、 等、 、 、 、 校、 、 、 、 、 、 、 、 、 、 、 、 、 、 校、 校、 校、 校、 校、 、 、 、 校、 校、 校、 校、

0
下载
关闭预览

相关内容

目标检测,也叫目标提取,是一种与计算机视觉和图像处理有关的计算机技术,用于检测数字图像和视频中特定类别的语义对象(例如人,建筑物或汽车)的实例。深入研究的对象检测领域包括面部检测和行人检测。 对象检测在计算机视觉的许多领域都有应用,包括图像检索和视频监视。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
11+阅读 · 2017年12月5日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
国家自然科学基金
5+阅读 · 2015年7月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月5日
Arxiv
20+阅读 · 2020年6月8日
Arxiv
24+阅读 · 2020年3月11日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
11+阅读 · 2017年12月5日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
相关基金
国家自然科学基金
5+阅读 · 2015年7月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员