Event-based image representations are fundamentally different to traditional dense images. This poses a challenge to apply current state-of-the-art models for object detection as they are designed for dense images. In this work we evaluate the YOLO object detection model on event data. To this end we replace dense-convolution layers by either sparse convolutions or asynchronous sparse convolutions which enables direct processing of event-based images and compare the performance and runtime to feeding event-histograms into dense-convolutions. Here, hyper-parameters are shared across all variants to isolate the effect sparse-representation has on detection performance. At this, we show that current sparse-convolution implementations cannot translate their theoretical lower computation requirements into an improved runtime.
翻译:以事件为基础的图像表示方式与传统密度高的图像有根本的不同。 这对应用当前最先进的物体探测模型来为密度高的图像设计构成挑战。 在此工作中, 我们根据事件数据来评估YOLO天体探测模型。 为此, 我们用稀疏的混凝土或无同步的零星变异来取代密集的变异层, 从而能够直接处理以事件为基础的图像, 比较性能和运行时间, 将事件历史图转化为密集的变异。 这里, 超参数被所有变异体共享, 以分离稀疏代表对探测性能的影响 。 在此, 我们显示, 目前的稀疏变异执行无法将其理论较低的计算要求转化为更好的运行时间 。