3D object detection from LiDAR sensor data is an important topic in the context of autonomous cars and drones. In this paper, we present the results of experiments on the impact of backbone selection of a deep convolutional neural network on detection accuracy and computation speed. We chose the PointPillars network, which is characterised by a simple architecture, high speed, and modularity that allows for easy expansion. During the experiments, we paid particular attention to the change in detection efficiency (measured by the mAP metric) and the total number of multiply-addition operations needed to process one point cloud. We tested 10 different convolutional neural network architectures that are widely used in image-based detection problems. For a backbone like MobilenetV1, we obtained an almost 4x speedup at the cost of a 1.13% decrease in mAP. On the other hand, for CSPDarknet we got an acceleration of more than 1.5x at an increase in mAP of 0.33%. We have thus demonstrated that it is possible to significantly speed up a 3D object detector in LiDAR point clouds with a small decrease in detection efficiency. This result can be used when PointPillars or similar algorithms are implemented in embedded systems, including SoC FPGAs. The code is available at https://github.com/vision-agh/pointpillars\_backbone.
翻译:从LiDAR传感器数据中检测3D对象是自主汽车和无人驾驶飞机的一个重要主题。 在本文中,我们介绍了关于深层神经神经网络主干选择对探测精确度和计算速度的影响的实验结果。 我们选择了PointPillarars网络, 其特点是简单结构、高速和模块化,便于扩展。 在实验中,我们特别注意检测效率的变化(由MAP测量的)和处理一点云所需的倍增操作的总数。 我们测试了10个在图像检测问题中广泛使用的相向神经网络结构。 对于像MovelnetV1这样的主干网,我们获得了近4x加速,其成本为 mAP 减少1.13%。 另一方面,对于CSPadarknet, 我们加速了1.5x以上,其增幅为0.33%。因此,我们证明有可能大大加快LiDAR点天体云中的3D对象探测器,其检测效率小幅降低。 在检测效率中,可以使用这种结果,包括MAGA/CFLA值。 当点时,可以使用这种结果在检测/CFAF值中可以使用。