Vector representations of graphs and relational structures, whether hand-crafted feature vectors or learned representations, enable us to apply standard data analysis and machine learning techniques to the structures. A wide range of methods for generating such embeddings have been studied in the machine learning and knowledge representation literature. However, vector embeddings have received relatively little attention from a theoretical point of view. Starting with a survey of embedding techniques that have been used in practice, in this paper we propose two theoretical approaches that we see as central for understanding the foundations of vector embeddings. We draw connections between the various approaches and suggest directions for future research.


翻译:图表和关系结构的矢量表示,无论是人工制作的特性矢量还是经学习的表达方式,使我们能够在结构中应用标准的数据分析和机器学习技术。在机器学习和知识表述文献中研究了产生这种嵌入的多种方法。然而,从理论的角度来看,矢量嵌入相对很少受到重视。从对实际使用的嵌入技术的调查开始,本文件提出了我们认为对理解矢量嵌入基础至关重要的两个理论方法。我们把各种方法联系起来,并提出未来研究的方向。

1
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
29+阅读 · 2020年3月16日
Arxiv
19+阅读 · 2018年10月25日
Arxiv
7+阅读 · 2018年3月21日
Arxiv
5+阅读 · 2017年10月27日
VIP会员
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员