Motion sensors embedded in wearable and mobile devices allow for dynamic selection of sensor streams and sampling rates, enabling several applications, such as power management and data-sharing control. While deep neural networks (DNNs) achieve competitive accuracy in sensor data classification, DNNs generally process incoming data from a fixed set of sensors with a fixed sampling rate, and changes in the dimensions of their inputs cause considerable accuracy loss, unnecessary computations, or failure in operation. We introduce a dimension-adaptive pooling (DAP) layer that makes DNNs flexible and more robust to changes in sensor availability and in sampling rate. DAP operates on convolutional filter maps of variable dimensions and produces an input of fixed dimensions suitable for feedforward and recurrent layers. We also propose a dimension-adaptive training (DAT) procedure for enabling DNNs that use DAP to better generalize over the set of feasible data dimensions at inference time. DAT comprises the random selection of dimensions during the forward passes and optimization with accumulated gradients of several backward passes. Combining DAP and DAT, we show how to transform non-adaptive DNNs into a Dimension-Adaptive Neural Architecture (DANA), while keeping the same number of parameters. Compared to existing approaches, our solution provides better classification accuracy over the range of possible data dimensions at inference time and does not require up-sampling or imputation, thus reducing unnecessary computations. Experiments on seven datasets (four benchmark real-world datasets for human activity recognition and three synthetic datasets) show that DANA prevents significant losses in classification accuracy of the state-of-the-art DNNs and, compared to baselines, it better captures correlated patterns in sensor data under dynamic sensor availability and varying sampling rates.
翻译:深神经网络(DNNs)在传感器数据分类方面实现了竞争性的准确性,而DNNs则一般地处理一组固定的传感器和固定取样率产生的数据,其投入层面的变化导致相当的准确性损失、不必要的计算或运行中的故障。我们引入了一个尺寸适应集合层,使DAPs对传感器可用性和取样率的变化更加灵活和有力。DANS在变异层面的快速过滤地图上运作,并产生适合向上和经常层的固定尺寸输入。我们还提议了一个尺寸适应性培训程序,以使使用DAP的DNS能够更全面地概括在推移时间对可行数据层面的组合。DAT包括随机选择远端路段的尺寸,并优化一些动态传动和取样率的累积性梯度。DAP和DAT联合起来,我们展示了如何将非适应性DNNS的精确度图解图解图图图图图图图图图图图图图图图图图图解变异异地转换DNNNNNNNS的DNUSalationalationalationalationalationalal-al lagalalationalational dalationalational dal dalationalationalationalationalations lagalations laves算算, las dald dald dalations dalations dald dalations labalations lad dald dalations lad dalations dalations dalations lad dalations lad daldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldalddaldaldaldaldaldaldaldaldaldaldaldalddaldaldalddalddaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldald