In real-world applications, data often come in a growing manner, where the data volume and the number of classes may increase dynamically. This will bring a critical challenge for learning: given the increasing data volume or the number of classes, one has to instantaneously adjust the neural model capacity to obtain promising performance. Existing methods either ignore the growing nature of data or seek to independently search an optimal architecture for a given dataset, and thus are incapable of promptly adjusting the architectures for the changed data. To address this, we present a neural architecture adaptation method, namely Adaptation eXpert (AdaXpert), to efficiently adjust previous architectures on the growing data. Specifically, we introduce an architecture adjuster to generate a suitable architecture for each data snapshot, based on the previous architecture and the different extent between current and previous data distributions. Furthermore, we propose an adaptation condition to determine the necessity of adjustment, thereby avoiding unnecessary and time-consuming adjustments. Extensive experiments on two growth scenarios (increasing data volume and number of classes) demonstrate the effectiveness of the proposed method.
翻译:在现实应用中,数据往往以不断增长的方式出现,数据量和类别数量可能会动态增长。这将给学习带来一个严峻的挑战:鉴于数据量或类别数量不断增加,我们必须立即调整神经模型能力,以获得有希望的性能。现有的方法要么忽视数据不断增长的性质,要么寻求独立搜索特定数据集的最佳结构,从而无法迅速调整变化数据的结构。为此,我们提出了一个神经结构适应方法,即适应 eXpert(AdaXpert),以有效调整不断增长的数据上以前的结构。具体地说,我们引入一个结构调整器,以根据先前的结构以及当前和以往数据分布的不同程度,为每个数据截图生成一个适当的结构。此外,我们提出一个调整条件,以确定调整的必要性,从而避免不必要的和耗时的调整。关于两种增长假设(增加数据数量和类别数量)的广泛实验显示了拟议方法的有效性。