The increasing deployment of low-cost IoT sensor platforms in industry boosts the demand for anomaly detection solutions that fulfill two key requirements: minimal configuration effort and easy transferability across equipment. Recent advances in deep learning, especially long-short-term memory (LSTM) and autoencoders, offer promising methods for detecting anomalies in sensor data recordings. We compared autoencoders with various architectures such as deep neural networks (DNN), LSTMs and convolutional neural networks (CNN) using a simple benchmark dataset, which we generated by operating a peristaltic pump under various operating conditions and inducing anomalies manually. Our preliminary results indicate that a single model can detect anomalies under various operating conditions on a four-dimensional data set without any specific feature engineering for each operating condition. We consider this work as being the first step towards a generic anomaly detection method, which is applicable for a wide range of industrial equipment.
翻译:在工业中越来越多地部署低成本的IOT传感器平台,增加了对异常现象探测解决方案的需求,满足了两个关键要求:最小的配置努力和在设备之间易转移。最近深层学习的进展,特别是长期短期内存(LSTM)和自动编码器,为探测传感器数据记录中的异常现象提供了有希望的方法。我们用一个简单的基准数据集将自动编码器与深神经网络(DNN)、LSTMS和神经神经网络(CNN)等各种结构进行比较,我们通过在各种操作条件下操作渗透式泵和人工引发异常现象而生成这些数据。我们的初步结果显示,单一模型可以在四维数据集下,在四维操作条件下探测异常现象,而每个操作条件没有具体特征工程。我们认为这项工作是朝着通用异常探测方法迈出的第一步,这种方法适用于广泛的工业设备。