We explore efficient estimation of statistical quantities, particularly rare event probabilities, for stochastic reaction networks. Consequently, we propose an importance sampling (IS) approach to improve the Monte Carlo (MC) estimator efficiency based on an approximate tau-leap scheme. The crucial step in the IS framework is choosing an appropriate change of probability measure to achieve substantial variance reduction. This task is typically challenging and often requires insights into the underlying problem. Therefore, we propose an automated approach to obtain a highly efficient path-dependent measure change based on an original connection in the stochastic reaction network context between finding optimal IS parameters within a class of probability measures and a stochastic optimal control formulation. Optimal IS parameters are obtained by solving a variance minimization problem. First, we derive an associated dynamic programming equation. Analytically solving this backward equation is challenging, hence we propose an approximate dynamic programming formulation to find near-optimal control parameters. To mitigate the curse of dimensionality, we propose a learning-based method to approximate the value function using a neural network, where the parameters are determined via a stochastic optimization algorithm. Our analysis and numerical experiments verify that the proposed learning-based IS approach substantially reduces MC estimator variance, resulting in a lower computational complexity in the rare event regime, compared with standard tau-leap MC estimators.


翻译:我们探索对统计量的高效估计,特别是稀有事件概率,以便用于随机反应网络。因此,我们建议采用一个重要的抽样(IS)方法,根据一种大致的调低方法,提高蒙特卡洛(MC)估计值的效率。IS框架的关键步骤是选择适当的概率变化量度,以大幅度减少差异。这项任务通常具有挑战性,往往需要深入了解根本问题。因此,我们建议采用一种自动化方法,在随机反应网络的原始连接基础上,从一个概率计量类别中找到最佳的IS参数和一种随机最佳控制配方。最佳的IS参数是通过解决差异最小化问题获得的。首先,我们得出一个相关的动态程序方程式方程式。分析解决这一落后方程式具有挑战性,因此我们建议采用一种大致动态的编程设计,以寻找近于最佳的控制参数的参数。因此,我们提议一种基于神经反应网络的基于学习的测算法,以估计值函数,通过一个随机比试机的测算算算算算法来确定参数。我们的分析与数字性实验方法,在比较性模型中大大地验证了稀有差异的情况,从而降低了拟议的学习能力。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
14+阅读 · 2019年9月11日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员