Simple adaptive procedures that converge to correlated equilibria are known to exist for normal form games (Hart and Mas-Colell 2000), but no such analogue exists for extensive-form games. Leveraging inspiration from Zinkevich et al. (2008), we show that any internal regret minimization procedure designed for normal-form games can be efficiently extended to finite extensive-form games of perfect recall. Our procedure converges to the set of forgiving correlated equilibria, a refinement of various other proposed extensions of the correlated equilibrium solution concept to extensive-form games (Forges 1986a; Forges 1986b; von Stengel and Forges 2008). In a forgiving correlated equilibrium, players receive move recommendations only upon reaching the relevant information set instead of all at once at the beginning of the game. Assuming all other players follow their recommendations, each player is incentivized to follow her recommendations regardless of whether she has done so at previous infosets. The resulting procedure is completely decentralized: players need neither knowledge of their opponents' actions nor even a complete understanding of the game itself beyond their own payoffs and strategies.
翻译:已知普通形式游戏(Hart和Mas-Colell 2000)存在与相关平衡相趋合的简单适应程序,但大型形式游戏却不存在这种类比。 利用Zinkevich等人(2008年)的灵感,我们显示,为普通形式游戏设计的任何内部最小遗憾程序都可以有效地扩大到有限的、完全回想的广型游戏。 我们的程序与一套原谅相关平衡概念的组合相趋一致,这是对广泛形式游戏相关平衡解决方案概念的其他各种拟议扩展的改进( Forges 1986a; Forges 1986b; von Stengel和Forges 2008) 。 在宽容的关联平衡中,玩家只有在获得相关信息,而不是在游戏开始时一次性收到移动建议。假设所有其他玩家都遵循他们的建议,每个玩家都被鼓励遵循她的建议,而不管她是否在以前的组合中这样做了。 由此产生的程序是完全分散化的:玩家不需要了解他们的对手的行动,甚至完全理解游戏本身的付款和战略。