In this paper, we consider the problem of allocating human operator assistance in a system with multiple autonomous robots. Each robot is required to complete independent missions, each defined as a sequence of tasks. While executing a task, a robot can either operate autonomously or be teleoperated by the human operator to complete the task at a faster rate. We show that the problem of creating a teleoperation schedule that minimizes makespan of the system is NP-Hard. We formulate our problem as a Mixed Integer Linear Program, which can be used to optimally solve small to moderate sized problem instances. We also develop an anytime algorithm that makes use of the problem structure to provide a fast and high-quality solution of the operator scheduling problem, even for larger problem instances. Our key insight is to identify blocking tasks in greedily-created schedules and iteratively remove those blocks to improve the quality of the solution. Through numerical simulations, we demonstrate the benefits of the proposed algorithm as an efficient and scalable approach that outperforms other greedy methods.
翻译:在本文中,我们考虑在多自主机器人的系统中分配人类操作员援助的问题。 每个机器人都需要完成独立的任务, 每个任务被定义为任务序列。 执行任务时, 机器人可以自主操作, 或者由操作员远程操作, 以更快的速度完成任务。 我们显示, 创建将系统范围最小化的远程操作时间表的问题是 NP- Hard 。 我们将我们的问题设计成一个混合的 Integer 线性程序, 它可以最佳地解决小到中小问题实例。 我们还开发一种随时使用问题结构的算法, 以提供操作员时间安排问题的快速和高质量解决方案, 甚至对于更大的问题案例。 我们的关键洞察力是找出贪婪生成的时间表中的阻拦任务, 并反复清除这些块, 以提高解决方案的质量。 通过数字模拟, 我们展示了拟议算法的好处, 作为一种高效和可扩展的方法, 超越其他贪婪的方法。