Deciding feasibility of large systems of linear equations and inequalities is one of the most fundamental algorithmic tasks. However, due to data inaccuracies or modeling errors, in practical applications one often faces linear systems that are infeasible. Extensive theoretical and practical methods have been proposed for post-infeasibility analysis of linear systems. This generally amounts to detecting a feasibility blocker of small size $k$, which is a set of equations and inequalities whose removal or perturbation from the large system of size $m$ yields a feasible system. This motivates a parameterized approach towards post-infeasibility analysis, where we aim to find a feasibility blocker of size at most $k$ in fixed-parameter time $f(k) \cdot m^{O(1)}$. We establish parameterized intractability ($W[1]$- and $NP$-hardness) results already in very restricted settings for different choices of the parameters maximum size of a deletion set, number of positive/negative right-hand sides, treewidth, pathwidth and treedepth. Additionally, we rule out a polynomial compression for MinFB parameterized by the size of a deletion set and the number of negative right-hand sides. Furthermore, we develop fixed-parameter algorithms parameterized by various combinations of these parameters when every row of the system corresponds to a difference constraint. Our algorithms capture the case of Directed Feedback Arc Set, a fundamental parameterized problem whose fixed-parameter tractability was shown by Chen et al. (STOC 2008).
翻译:确定大型线性方程式和不平等系统的可行性是最基本的算法任务之一,然而,由于数据不准确或建模错误,在实际应用中,人们往往会遇到无法做到的线性系统。提出了广泛的理论和实践方法,用于线性系统不可行后的分析。这一般相当于检测一个小规模的方程式和不平等阻塞器,该方程式和不平等从大型规模系统撤除或扰动是一个可行的系统。这促使对可行性后分析采取参数化的方法,我们的目标是在固定参数时间找到以美元最多为美元的可行性阻塞器。我们为线性系统的不可行性分析提出了广泛的理论和实践方法。我们建立了一个小方程式阻塞(W[1]美元和$NP$-硬度)的参数,这一系列方程式和不平等使得对删除数据集最大参数的不同选择环境非常有限,正/负向右面、直径和直树性参数的分析,我们的目标是在固定参数的每个直线性轨道上,我们用直径直径的直径的直径比值,我们用直方的直方的直径直方的精确度分析,我们用直方的直径直方的直方的直方的直方的直方路路路路路路路路路路的精确度,我们用直方的精确度,这些方的直路路路路路路路的精确度的比的精确度系统的精确度,我们的精确度的精确度的直路的直路路路路路路路路路路路路路路路路路路路路路路路路的精确度,这些的直路路路路路路路的精确度,我们的精确度,这些的直路的精确度,我们的直路的直路路的直路的直路的直路的直路的直路路路路的直路的直路的直路路路路路路路路路路路路路的精确度,我们的直路路路路路路路的直路的直路的直路。。。。