Extreme learning machines (ELMs), which preset hidden layer parameters and solve for last layer coefficients via a least squares method, can typically solve partial differential equations faster and more accurately than Physics Informed Neural Networks. However, they remain computationally expensive when high accuracy requires large least squares problems to be solved. Domain decomposition methods (DDMs) for ELMs have allowed parallel computation to reduce training times of large systems. This paper constructs a coarse space for ELMs, which enables further acceleration of their training. By partitioning interface variables into coarse and non-coarse variables, selective elimination introduces a Schur complement system on the non-coarse variables with the coarse problem embedded. Key to the performance of the proposed method is a Neumann-Neumann acceleration that utilizes the coarse space. Numerical experiments demonstrate significant speedup compared to a previous DDM method for ELMs.
翻译:暂无翻译