The lasso and elastic net are popular regularized regression models for supervised learning. Friedman, Hastie, and Tibshirani (2010) introduced a computationally efficient algorithm for computing the elastic net regularization path for ordinary least squares regression, logistic regression and multinomial logistic regression, while Simon, Friedman, Hastie, and Tibshirani (2011) extended this work to Cox models for right-censored data. We further extend the reach of the elastic net-regularized regression to all generalized linear model families, Cox models with (start, stop] data and strata, and a simplified version of the relaxed lasso. We also discuss convenient utility functions for measuring the performance of these fitted models.


翻译:拉索和弹性网是受监督学习流行的常规回归模型。 Friedman、Hastie和Tibshirani(2010年)引入了计算高效的算法,用于计算普通最小回归方、物流回归和多等值物流回归的弹性网络回归路径,而Simon、Friedman、Hastie和Tibshirani(2011年)将这项工作扩展至右检数据的Cox模型。我们进一步将弹性网络回归的覆盖范围扩大到所有通用线性模型家庭、Cox模型(启动、停止)数据和层,以及宽松拉索的简化版。我们还讨论了测量这些适应模型的功能的方便实用功能。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
专知会员服务
55+阅读 · 2020年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
279+阅读 · 2019年10月9日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Gartner:2019 年 MSP 魔力象限
云头条
15+阅读 · 2019年3月6日
CVPR2019 | 全景分割:Attention-guided Unified Network
极市平台
9+阅读 · 2019年3月3日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
A General and Adaptive Robust Loss Function
Arxiv
8+阅读 · 2018年11月5日
Arxiv
4+阅读 · 2018年4月26日
Arxiv
4+阅读 · 2018年2月19日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Gartner:2019 年 MSP 魔力象限
云头条
15+阅读 · 2019年3月6日
CVPR2019 | 全景分割:Attention-guided Unified Network
极市平台
9+阅读 · 2019年3月3日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员