We present the application of simultaneous diagonalization and minimum energy (SDME) high-order finite element modal bases for simulation of transient non-linear elastodynamic problem, including impact cases with neo-hookean hyperelastic materials. The bases are constructed using procedures for simultaneous diagonalization of the internal modes and Schur complement of the boundary modes from the standard nodal and modal bases, constructed using Lagrange and Jacobi polynomials, respectively. The implementation of these bases in a high-order finite element code is straightforward, since the procedure is applied only to the one-dimensional expansion bases. Non-linear transient structural problems with large deformation, hyperelastic materials and impact are solved using the obtained bases with explicit and implicit time integration procedures. Iterative solutions based on preconditioned conjugate gradient methods are considered. The performance of the proposed bases in terms of the number of iterations of pre-conditioned conjugate gradient methods and computational time are compared with the standard nodal and modal bases. Our numerical tests obtained speedups up to 41 using the considered bases when compared to the standard ones.
翻译:我们提出同时二进制和最低能量(SDME)高阶有限元素模型基础的应用,用于模拟瞬时非线性弹性体动力学问题,包括新华氏超弹性材料的撞击案例;这些基础的构建采用内部模式同时二进制程序和标准交点基和模式基的边界模式的Schur补充程序,分别使用Lagrange和Jacobi多边代号构建;在高阶有限元素代码中实施这些基础是直截了当的,因为程序只适用于单维扩张基;大型变形、超弹性材料和冲击的非线性瞬态结构问题,通过以明确和隐含的时间集成程序,利用所获得的基础加以解决;考虑基于先决条件的同质梯度梯度法的迭代法;拟议基准的性能与预设的同质梯度梯度法和计算时间的重复数,与标准节点和模式基进行比较;我们的数字测试,在与标准基点相比时,利用经过考虑的基数到41年的基数。