We present a computational method for empirically characterizing the training loss level-sets of deep neural networks. Our method numerically constructs a path in parameter space that is constrained to a set with a fixed near-zero training loss. By measuring regularization functions and test loss at different points within this path, we examine how different points in the parameter space with the same fixed training loss compare in terms of generalization ability. We also compare this method for finding regularized points with the more typical method, that uses objective functions which are weighted sums of training loss and regularization terms. We apply dimensionality reduction to the traversed paths in order to visualize the loss level sets in a well-regularized region of parameter space. Our results provide new information about the loss landscape of deep neural networks, as well as a new strategy for reducing test loss.
翻译:我们提出一种计算方法,对深神经网络的培训损失水平进行经验化定性。我们的方法在数字上构建了参数空间的路径,该路径受固定的近零培训损失的限制。通过测量正常化功能和测试路径内不同点的损失,我们研究了参数空间的不同点与相同的固定培训损失在一般化能力方面的比较。我们还比较了这一查找正常化点的方法与更典型的方法,该方法使用客观功能,即培训损失的加权总和和和正规化条件。我们将维度降低到跨轨路径,以便在正常化的参数空间区域对损失水平进行可视化。我们的结果提供了关于深神经网络损失情况的新信息,以及减少测试损失的新战略。