Source-Free domain adaptation transits the source-trained model towards target domain without exposing the source data, trying to dispel these concerns about data privacy and security. However, this paradigm is still at risk of data leakage due to adversarial attacks on the source model. Hence, the Black-Box setting only allows to use the outputs of source model, but still suffers from overfitting on the source domain more severely due to source model's unseen weights. In this paper, we propose a novel approach named RAIN (RegulArization on Input and Network) for Black-Box domain adaptation from both input-level and network-level regularization. For the input-level, we design a new data augmentation technique as Phase MixUp, which highlights task-relevant objects in the interpolations, thus enhancing input-level regularization and class consistency for target models. For network-level, we develop a Subnetwork Distillation mechanism to transfer knowledge from the target subnetwork to the full target network via knowledge distillation, which thus alleviates overfitting on the source domain by learning diverse target representations. Extensive experiments show that our method achieves state-of-the-art performance on several cross-domain benchmarks under both single- and multi-source black-box domain adaptation.


翻译:无源域适应性在不暴露源数据的情况下,将源培训模式传递到目标领域,同时试图消除关于数据隐私和安全的这些关切。然而,由于源模型受到对抗性攻击,这一模式仍然面临数据渗漏的风险。因此,黑ox设置仅允许使用源模型的输出,但由于源模型的无形重量,仍然在源领域存在更严重地过度适应。在本文件中,我们提出了一个新颖的方法,名为RAIN(输入和网络注册注册),用于从投入一级和网络一级正规化两方面调整黑牛域。在投入一级和网络一级,我们设计了一个新的数据扩增技术,作为MixUp 阶段,以突出插图中的任务目标目标目标目标目标目标目标目标目标目标目标目标目标目标目标目标目标目标目标目标,从而通过学习不同的目标说明,减轻来源领域过度适应性。关于输入层面的大规模实验显示,我们的方法在多个单一基准下实现了“源数据库”的多标准。

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
13+阅读 · 2022年1月20日
Arxiv
13+阅读 · 2021年7月20日
Arxiv
13+阅读 · 2021年3月29日
AdarGCN: Adaptive Aggregation GCN for Few-Shot Learning
VIP会员
相关VIP内容
NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员