项目名称: 量子点中重空穴-轻空穴耦合和发光极化各向异性机制和量子调控

项目编号: No.61474116

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 无线电电子学、电信技术

项目作者: 骆军委

作者单位: 中国科学院半导体研究所

项目金额: 85万元

中文摘要: 量子点中重空穴-轻空穴态耦合和发光极化是实现基于量子点量子信息和量子计算的两个关键性质。重空穴-轻空穴耦合对量子点的各种电学、光学和电子自旋性质都有深刻的影响,而量子点发光极化各向异性在实现光学激发的方法制备空穴量子比特起到关键的作用。对它们进行深入和正确地理解并能够根据实际应用的需求对它们进行大范围地调控是实现基于量子点量子信息和量子方案的前提条件。但是,对引起量子点中重空穴-轻空穴和发光极化各向异性的机制的认识普遍存在严重的误解。基于原子论经验赝势方法我们在此提出发展可精确计算量子点中重空穴-轻空穴态耦合和发光极化的模拟方法,从而能够揭露量子点中重-轻空穴耦合和发光极化的真正原理,为调控这两个关键物理量提出量子点的设计原理,并为发展简单可靠的模型哈密顿量近视方法提供基准和指导。我们的目标是通过我们的研究成果为设计和开发基于量子点的量子信息和量子计算提供新的途径。

中文关键词: 半导体量子点;量子物理;自旋电子器件;量子信息;量子调控

英文摘要: The heavy-hole (HH) and light-hole (LH) coupling and emission polarization in quantum dots (QDs) are tow of most critical properties to realize QD based quantum information and quantum computing. The HH-LH coupling has profound effects on all kinds of electronic, optical, and spintronic properties of QDs. While optical polarization anisotropy of QDs is paramount important for optical initialization of hole spin qubit. The prerequisite of realization of QD based quantum information and quantum schemes is to deeply and correctly understanding the mechanisms of HH-LH coupling and optical polarization anisotropy as well as engineering them in a wide range of magnitude. However, there is curious misunderstanding in the common thoughts on the mechanisms of HH-LH coupling and optical polarization anisotropy. Based on our well-demonstrated atomistic pseudopotential method, we propose here to develop simulation methods which could accurately calculate the magnitude of HH-LH coupling and degree of optical polarization anisotropy for QDs. Therefore, we can understand the real mechanisms inducing HH-LH coupling and optical polarization anisotropy of QDs, and fininally present design principle of QDs to archive engineering the HH-LH coupling and degree of optical polarization anisotropy in a wide range of magnitude. Our results will provide a benchmark and guidance for developing reasonable model Hamiltonian approaches to capture correctly them. Our goal is to provide new routes for designing and exploring QD based quantum information and quantum computing from the achievements of this proposal.

英文关键词: semiconductor quantum dots;quantum physics;spintronics devices;quantum information;quantum engineering

成为VIP会员查看完整内容
0

相关内容

专知会员服务
51+阅读 · 2021年10月16日
专知会员服务
15+阅读 · 2021年10月11日
2021年全球量子信息发展报告, 32页pdf
专知会员服务
78+阅读 · 2021年5月14日
专知会员服务
31+阅读 · 2021年5月7日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
【经典书】线性代数,286页pdf
专知会员服务
128+阅读 · 2021年2月28日
微软发布量子计算最新成果,证实拓扑量子比特的物理机理
微软研究院AI头条
0+阅读 · 2022年3月18日
从最小二乘法到卡尔曼滤波
PaperWeekly
1+阅读 · 2021年12月22日
Science:量子计算机成功创造时间晶体
学术头条
0+阅读 · 2021年11月20日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月17日
Quantum Computing -- from NISQ to PISQ
Arxiv
1+阅读 · 2022年4月15日
小贴士
相关VIP内容
专知会员服务
51+阅读 · 2021年10月16日
专知会员服务
15+阅读 · 2021年10月11日
2021年全球量子信息发展报告, 32页pdf
专知会员服务
78+阅读 · 2021年5月14日
专知会员服务
31+阅读 · 2021年5月7日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
【经典书】线性代数,286页pdf
专知会员服务
128+阅读 · 2021年2月28日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员