In many real-life reinforcement learning (RL) problems, deploying new policies is costly. In those scenarios, algorithms must solve exploration (which requires adaptivity) while switching the deployed policy sparsely (which limits adaptivity). In this paper, we go beyond the existing state-of-the-art on this problem that focused on linear Markov Decision Processes (MDPs) by considering linear Bellman-complete MDPs with low inherent Bellman error. We propose the ELEANOR-LowSwitching algorithm that achieves the near-optimal regret with a switching cost logarithmic in the number of episodes and linear in the time-horizon $H$ and feature dimension $d$. We also prove a lower bound proportional to $dH$ among all algorithms with sublinear regret. In addition, we show the ``doubling trick'' used in ELEANOR-LowSwitching can be further leveraged for the generalized linear function approximation, under which we design a sample-efficient algorithm with near-optimal switching cost.
翻译:在许多现实生活强化学习( RL) 问题中, 部署新政策的成本很高。 在这些情景中, 算法必须解决探索问题( 需要适应性), 而同时分散地转换已部署的政策( 限制适应性 ) 。 在本文中, 我们超越了当前最先进的这一问题, 重点是线性 Markov 决策程序( MDPs ) 。 我们考虑的线性 Bellman 完成的 MDP, 其内在的 Bellman 错误较低 。 我们提议 ELEANOR- LowSw Switching 算法, 实现近于最佳的遗憾, 在时间- 焦热量 $ 和 特性维度 $ ( $H) 的片段和线性 $( $ d$ ) 中, 我们用亚线性后悔的所有算算算算算法中, 也比重到 $dH 。 此外, 我们展示 ELEANORN- LowSwwinging 所使用的“ ” gistranginging ” ” 用于一般线性线性功能缩缩缩缩缩缩缩缩略, 我们用在设计一个抽样高效算算法中可以进一步被利用, 。</s>