For sequential data, change points are moments of abrupt regime switches. Such changes appear in different scenarios, including complex video surveillance, and we need to detect them as fast as possible. Classic approaches for change point detection (CPD) perform poorly for semi-structured sequential data because of the absence of adequate data representation learning procedure. We propose a principled loss function that approximates classic rigorous solutions but is differentiable and makes possible representation learning. This loss function balances change detection delay and time to false alarm to provide a successful model for CPD. In experiments, we consider simple series and more complex real-world image sequences and videos with change points. For more complex problems, we show that we need more meaningful representations tailored for the specificity of the CPD task. Taking this into account, the proposed approach InDiD improves baseline results of CPD for various data types. For explosion detection, F1 score for our method is $0.54$ compared to baseline scores $0.46$ and $0.30$.
翻译:对于连续数据而言,变化点是突如其来的系统开关时刻。这种变化出现在不同的情景中,包括复杂的视频监视,我们需要尽可能快地检测这些变化。典型的变化点探测方法(CPD)由于缺乏适当的数据代表学习程序,对半结构顺序数据效果不佳。我们建议了一种原则性损失功能,它大致上是典型的严格解决方案,但有差异,并有可能进行代表学习。这个损失函数平衡了变化检测延迟和假警报的时间,以便为CPD提供一个成功的模型。在实验中,我们考虑的是简单的序列和更为复杂的真实世界图像序列和带变化点的视频。对于更复杂的问题,我们表示我们需要根据CPD任务的特殊性进行更有意义的表述。考虑到这一点,“DiD”中的拟议方法改进了各种数据类型的CPD的基线结果。关于爆炸探测,我们方法的F1得分为0.54美元,而基线得分为0.46美元和0.30美元。