项目名称: 弱观测复杂海洋环境下AUV动态目标跟踪算法研究
项目编号: No.61273334
项目类型: 面上项目
立项/批准年度: 2013
项目学科: 自动化技术、计算机技术
项目作者: 刘开周
作者单位: 中国科学院沈阳自动化研究所
项目金额: 75万元
中文摘要: 与大型水下基站相比,自主水下机器人(AUV)搭载的舷侧阵声纳存在固有孔径不足问题。针对该被动声纳受限引起的一系列科学问题,以提高多杂波、低信噪比、弱观测复杂海洋环境下目标运动参数估计的快速准确性为目标,主要研究:1)弱观测条件下系统噪声自适应的快速稳定的TMA滤波算法;2)多杂波、低信噪比复杂海洋环境下的柔性跟踪门及数据关联算法;3)同时满足参数估计性能和弱机动AUV捷径跟踪等约束的轨迹规划算法;4)AUV对水下动态目标被动跟踪仿真系统及核心算法验证。采用基于自适应双无色卡尔曼滤波算法、柔性跟踪门、神经网络联合概率数据关联算法和基于微分包含的OTP算法,探索复杂环境下AUV对水下目标运动参数估计性能与观测平台机动轨迹之间内在的时空耦合规律,并通过数学建模、理论分析、仿真和现场数据验证等手段进行研究。本项目研究成果将为AUV进一步的行为决策提供依据,为更自主AUV的研发奠定坚实的理论基础。
中文关键词: 自主水下机器人;被动目标跟踪;非线性滤波;数据关联;轨迹优化
英文摘要: Compared to the large underwater base station, there is an inherent lack of aperture in the passive flank array sonar installed on the autonomous underwater vehicle (AUV). And therefore a series of scientific problems were raised, such as limited range and inaccurate bearing angle measurements. In order to estimate motion parameters of the dynamic target fast and accurately in an environment subjected to multiple noisy sources, low signal-to-noise ratio and weak observation, research mainly focus on the following problems: 1) The timely stable target motion analysis filter algorithm which is robust to varying system noise and measurement noise over time; 2) the tracking gate and data association algorithm used in the adverse environment subjected to multiple noisy sources and low signal-to-noise ratio; 3) the tracking strategy capable of meeting the needs of estimate performance and the shortcut constraints for the weak maneuvering AUV; 4) the design and implementation of a demonstration simulation system for the mission scenario of AUV's passive tracking and the validation for the core tracking strategy on the simulation system The adaptive double unscented Kalman filter, flexible tracking gate, joint probabilistic data association algorithm base on artificial neural network and OTP algorithm based on inclusive
英文关键词: Autonomous underwater vehicle;bearings-only target tracking;nonlinear filter;data association;optimization of trajectory