A change points detection aims to catch an abrupt disorder in data distribution. Common approaches assume that there are only two fixed distributions for data: one before and another after a change point. Real-world data are richer than this assumption. There can be multiple different distributions before and after a change. We propose an approach that works in the multiple-distributions scenario. Our approach learn representations for semi-structured data suitable for change point detection, while a common classifiers-based approach fails. Moreover, our model is more robust, when predicting change points. The datasets used for benchmarking are sequences of images with and without change points in them.
翻译:变化点探测旨在捕捉数据分布的突然混乱。 常见方法假定数据只有两种固定分布: 一种在变化点之前,另一种在变化点之后。 现实世界数据比这个假设丰富。 变化前后可能存在多种不同的分布。 我们提出一种在多重分布情景中可行的方法。 我们的方法学习了适合变化点检测的半结构化数据,而共同的分类方法却失败了。 此外, 在预测变化点时,我们的模型更加坚固。 用于基准设定的数据集是图像的序列, 其中有有变化点, 也有变化点, 没有变化点。