We investigate the domain of satisfiable formulas in satisfiability modulo theories (SMT), in particular, automatic generation of a multitude of satisfying assignments to such formulas. Despite the long and successful history of SMT in model checking and formal verification, this aspect is relatively under-explored. Prior work exists for generating such assignments, or samples, for Boolean formulas and for quantifier-free first-order formulas involving bit-vectors, arrays, and uninterpreted functions (QF_AUFBV). We propose a new approach that is suitable for a theory T of integer arithmetic and to T with arrays and uninterpreted functions. The approach involves reducing the general sampling problem to a simpler instance of sampling from a set of independent intervals, which can be done efficiently. Such reduction is carried out by expanding a single model - a seed - using top-down propagation of constraints along the original first-order formula.
翻译:尽管SMT在模式检查和正式核查方面历史悠久而成功,但这一方面探索相对不足。以前曾为生成这种分配或样品、布林公式和无限定的首级公式进行了工作,这些公式涉及位标、阵列和未解释的函数(QF_AUFBV),我们提出了一种新的方法,适用于整数计算T理论,适用于T,适用于T,适用于数组和未解释的函数。这一方法涉及将一般抽样问题从一组独立间隔减少到一个较简单的抽样实例,可以有效完成。这种减少是通过扩大一个单一模型,即种子,按照最初的首选公式,利用自上而下的限制因素传播来扩大一个单一模型,即种子。