We provide a clear and concise introduction to the subjects of inverse problems and data assimilation, and their inter-relations. The first part of our notes covers inverse problems; this refers to the study of how to estimate unknown model parameters from data. The second part of our notes covers data assimilation; this refers to a particular class of inverse problems in which the unknown parameter is the initial condition (and/or state) of a dynamical system, and the data comprises partial and noisy observations of the state. The third and final part of our notes describes the use of data assimilation methods to solve generic inverse problems by introducing an artificial algorithmic time. Our notes cover, among other topics, maximum a posteriori estimation, (stochastic) gradient descent, variational Bayes, Monte Carlo, importance sampling and Markov chain Monte Carlo for inverse problems; and 3DVAR, 4DVAR, extended and ensemble Kalman filters, and particle filters for data assimilation. Each of parts one and two starts with a chapter on the Bayesian formulation, in which the problem solution is given by a posterior distribution on the unknown parameter. Then the following chapter specializes the Bayesian formulation to a linear-Gaussian setting where explicit characterization of the posterior is possible and insightful. The next two chapters explore methods to extract information from the posterior in nonlinear and non-Gaussian settings using optimization and Gaussian approximations. The final two chapters describe sampling methods that can reproduce the full posterior in the large sample limit. Each chapter closes with a bibliography containing citations to alternative pedagogical literature and to relevant research literature. We also include a set of exercises at the end of parts one and two. Our notes are thus useful for both classroom teaching and self-guided study.


翻译:我们对反问题和数据同化及其相互关系的主题进行清晰和简洁的介绍。 我们的注释的第一部分涉及反问题; 这是指研究如何从数据中估计未知模型参数; 我们的注释的第二部分涉及数据同化; 这是指一个特定的反问题类别,其中未知参数是动态系统的初始条件(和/或状态),而数据包括部分和噪音的对州观测。 我们的注释的第三部分和最后一部分描述了数据同化方法的使用,通过引入人工算法时间来解决一般反问题。 我们的注释涉及的问题包括: 如何从数据同化中估算出未知模型参数, 包括(感化) 梯度下层、 变形巴、 蒙特卡洛、 重要取样和 Markov 链 Monte Carlo 的反向问题; 3DVAR、 4DVAR、 扩展和多言调 Kalman 过滤器, 数据同化的粒子过滤器。 第一部分和第二部分从Bayesian 配制成的一章开始, 其中, 问题由近义文献提供近距离的离子、 直径的直系、 直径、 直径、 直径、 直径、 直径、 直径、 直径、 直径、 直径、 分、直径、直径、直系、直系、直系、直系、直系、直系、 分、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
52+阅读 · 2020年9月7日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
5+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月30日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
52+阅读 · 2020年9月7日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
5+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员