项目名称: 利用电场下锂离子迁移调控氧化物的磁性

项目编号: No.11504192

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 数理科学和化学

项目作者: 李强

作者单位: 青岛大学

项目金额: 24万元

中文摘要: 电场调控磁性在物理基础研究和信息存储应用中具有重要意义,已成为自旋电子学领域的研究热点。然而,目前磁性材料的电场调控大多局限于异质结界面处的有限厚度,而且通常在较低温度或较高电压下才显现较好的调控效果。本项目提出:以CoFe2O4、Fe3O4等磁性氧化物作为负极材料,制备类似固态锂离子电池结构的电控磁异质结。利用电场控制锂离子在磁性氧化物中的嵌入与脱出运动,调节材料晶格结构和元素价态的变化,实现室温和低压下磁性的大范围电场调控;在锂离子迁移运动过程中,同步测量负极材料磁学性质、物相结构、元素价态等参数的变化,分析磁性调控机制;根据第一性原理方法,计算分析磁性氧化物的晶格结构、电子结构、磁学性质随锂离子含量的变化规律,揭示利用电场下锂离子迁移调控氧化物磁性的微观机理。项目研究有望发展电场调控磁性的新途径,促进新型自旋电子器件的发展。

中文关键词: 自旋电子学;电场调控磁性;磁性材料

英文摘要: As a subject with longstanding interest in spintronics, the electric-field control of magnetism has been widely studied due to its importance in both fundamental physics and information technology. However, in most present research the magnetoelectric effects are only limited to extremely small material volumes adjacent to the surfaces with low temperatures and high voltage. In this project, we propose to fabricate heterojunctions with structure similar to the solid-state lithium-ion battery using CoFe2O4 or Fe3O4 as anode materials. The de-intercalation of lithium ions in iron oxide spinel can result in changes of valence and lattice structure, thus yielding a large and fully reversible change in magnetization at room temperature under low voltage. During the de-intercalation process, we will make measurement of magnetism, valence and lattice structure. At the same time, we will calculate them by first principle calculation. Combining the experiment and calculation results, this project would clarify the microcosmic mechanism, pave new ways for electric-field control of magnetism and promote development of novel spintronics devices.

英文关键词: spintronics;electric-field control of magnetism;magnetic materials

成为VIP会员查看完整内容
0

相关内容

《华为云数据库在金融行业的创新与探索》华为26页PPT
专知会员服务
13+阅读 · 2022年3月23日
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
39+阅读 · 2021年11月29日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
16+阅读 · 2021年10月23日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
109+阅读 · 2021年4月7日
微软发布量子计算最新成果,证实拓扑量子比特的物理机理
微软研究院AI头条
0+阅读 · 2022年3月18日
全固态电池领域,小公司的加速度——恩力动力
创业邦杂志
0+阅读 · 2022年2月25日
我的信号是由核辐射传输的,金属屏蔽都挡不住
机器之心
0+阅读 · 2021年11月24日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Residual Mixture of Experts
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Deformable Style Transfer
Arxiv
14+阅读 · 2020年3月24日
小贴士
相关主题
相关VIP内容
《华为云数据库在金融行业的创新与探索》华为26页PPT
专知会员服务
13+阅读 · 2022年3月23日
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
39+阅读 · 2021年11月29日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
16+阅读 · 2021年10月23日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
109+阅读 · 2021年4月7日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员