We analyze the convergence of a nonlocal gradient descent method for minimizing a class of high-dimensional non-convex functions, where a directional Gaussian smoothing (DGS) is proposed to define the nonlocal gradient (also referred to as the DGS gradient). The method was first proposed in [42], in which multiple numerical experiments showed that replacing the traditional local gradient with the DGS gradient can help the optimizers escape local minima more easily and significantly improve their performance. However, a rigorous theory for the efficiency of the method on nonconvex landscape is lacking. In this work, we investigate the scenario where the objective function is composed of a convex function, perturbed by a oscillating noise. We provide a convergence theory under which the iterates exponentially converge to a tightened neighborhood of the solution, whose size is characterized by the noise wavelength. We also establish a correlation between the optimal values of the Gaussian smoothing radius and the noise wavelength, thus justify the advantage of using moderate or large smoothing radius with the method. Furthermore, if the noise level decays to zero when approaching global minimum, we prove that DGS-based optimization converges to the exact global minimum with linear rates, similarly to standard gradient-based method in optimizing convex functions. Several numerical experiments are provided to confirm our theory and illustrate the superiority of the approach over those based on the local gradient.


翻译:我们分析了非本地梯度下降法的趋同性,以尽量减少某类高频非电流功能,其中提出方向性高斯平滑(DGS)以定义非本地梯度(也称为DGS梯度)。该方法在[42]中首次提出,其中多个数字实验显示,用DGS梯度取代传统的本地梯度,可以帮助优化者更容易地摆脱本地迷你,并大大改善其性能。然而,缺乏一种严格的理论,说明该方法在非康维克斯地貌上的效率。在这项工作中,我们调查了一种设想,即目标函数由一个螺旋函数组成,并受到振动噪音的干扰。我们提供了一种趋同理论,根据这种理论,该方法将它指数指数指数指数指数指数指数指数指数指数集中到以噪音波长为特征的更紧凑紧的解决方案区段。我们还建立了高斯光度半径和噪音波长的最佳值之间的联系,从而证明使用中度或大平滑半度方法的好处。此外,如果在接近全球最低度时,噪音水平值函数会减为零,则以全球最低水平水平水平,我们证明,以精确度标准标准标准水平的DGS标准模型将证实。

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
14+阅读 · 2022年10月15日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员