Time series data have numerous applications in big data analytics. However, they often cause privacy issues when collected from individuals. To address this problem, most existing works perturb the values in the time series while retaining their temporal order, which may lead to significant distortion of the values. Recently, we propose TLDP model that perturbs temporal perturbation to ensure privacy guarantee while retaining original values. It has shown great promise to achieve significantly higher utility than value perturbation mechanisms in many time series analysis. However, its practicability is still undermined by two factors, namely, utility cost of extra missing or empty values, and inflexibility of privacy budget settings. To address them, in this paper we propose {\it switch} as a new two-way operation for temporal perturbation, as opposed to the one-way {\it dispatch} operation. The former inherently eliminates the cost of missing, empty or repeated values. Optimizing switch operation in a {\it stateful} manner, we then propose $StaSwitch$ mechanism for time series release under TLDP. Through both analytical and empirical studies, we show that $StaSwitch$ has significantly higher utility for the published time series than any state-of-the-art temporal- or value-perturbation mechanism, while allowing any combination of privacy budget settings.


翻译:时间序列数据在大数据分析中有许多应用。 但是,当从个人收集时,它们往往会造成隐私问题。 为了解决这个问题,大多数现有工作在保留时间序列的同时干扰时间序列中的值值,而保留时间序列则可能导致价值的重大扭曲。 最近, 我们提议了TLDP模型, 干扰时间扰动, 以确保隐私保障, 并保留原始值。 在许多时间序列分析中, 它显示了实现大大高于价值扰动机制的效用的巨大希望。 但是, 它的可行性仍然受到两个因素的破坏, 即额外缺失或空值的效用成本, 以及隐私预算设置不灵活。 为了解决这些问题, 我们在本文件中提议 ~it开关作为时间扰动的新的双向操作, 而不是单向的 ~它发送。 前者本身就消除了缺失、 空的或重复的值的成本。 在许多时间序列分析中, 我们然后提议 $Stawitch 机制在 TLDP 下的时间序列下释放时间序列的 。 通过分析和实验性研究, 我们显示, 在任何时间序列中, 允许任何州- strachang 的汇率组合, 。

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
124+阅读 · 2020年9月8日
专知会员服务
61+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年2月15日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
VIP会员
相关VIP内容
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
124+阅读 · 2020年9月8日
专知会员服务
61+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员