We introduce MixFunn, a novel neural network architecture designed to solve differential equations with enhanced precision, interpretability, and generalization capability. The architecture comprises two key components: the mixed-function neuron, which integrates multiple parameterized nonlinear functions to improve representational flexibility, and the second-order neuron, which combines a linear transformation of its inputs with a quadratic term to capture cross-combinations of input variables. These features significantly enhance the expressive power of the network, enabling it to achieve comparable or superior results with drastically fewer parameters and a reduction of up to four orders of magnitude compared to conventional approaches. We applied MixFunn in a physics-informed setting to solve differential equations in classical mechanics, quantum mechanics, and fluid dynamics, demonstrating its effectiveness in achieving higher accuracy and improved generalization to regions outside the training domain relative to standard machine learning models. Furthermore, the architecture facilitates the extraction of interpretable analytical expressions, offering valuable insights into the underlying solutions.
翻译:暂无翻译