The incredible development of federated learning (FL) has benefited various tasks in the domains of computer vision and natural language processing, and the existing frameworks such as TFF and FATE has made the deployment easy in real-world applications. However, federated graph learning (FGL), even though graph data are prevalent, has not been well supported due to its unique characteristics and requirements. The lack of FGL-related framework increases the efforts for accomplishing reproducible research and deploying in real-world applications. Motivated by such strong demand, in this paper, we first discuss the challenges in creating an easy-to-use FGL package and accordingly present our implemented package FederatedScope-GNN (FS-G), which provides (1) a unified view for modularizing and expressing FGL algorithms; (2) comprehensive DataZoo and ModelZoo for out-of-the-box FGL capability; (3) an efficient model auto-tuning component; and (4) off-the-shelf privacy attack and defense abilities. We validate the effectiveness of FS-G by conducting extensive experiments, which simultaneously gains many valuable insights about FGL for the community. Moreover, we employ FS-G to serve the FGL application in real-world E-commerce scenarios, where the attained improvements indicate great potential business benefits. We publicly release FS-G, as submodules of FederatedScope, at https://github.com/alibaba/FederatedScope to promote FGL's research and enable broad applications that would otherwise be infeasible due to the lack of a dedicated package.
翻译:联邦学习联合会(FL)的发展令人难以置信,这在计算机视野和自然语言处理领域使各种任务受益匪浅,TFF和FATE等现有框架使实际应用软件的部署变得容易,但是,尽管图表数据很普遍,但联邦的图表学习(FGL)因其独特的特点和要求而没有得到很好的支持;缺乏FGL相关框架,加大了完成可复制研究和在现实世界应用中部署应用的力度;由于这种强烈需求,我们首先讨论了在创建易于使用的FGL软件包方面的挑战,并因此介绍了我们已实施的FFedScope-GNN(FS-GG)软件包(FS-GL)的部署,这为模块化和FGL算法的组合提供了统一的观点;(2) 全面的DataZoo和模型Zoo用于FGL的超模版功能;(3) 高效的模型自动调整部分;以及(4) 现成的隐私攻击和防御能力,我们确认FSG的效用,通过进行广泛的实验,同时对FGL软件软件的实用性应用进行许多有价值的了解,从而显示FGGG公司在实际应用,为FSFS-G/A-G的大规模应用。