We aim at investigating the solvability/insolvability of nondeterministic logarithmic-space (NL) decision, search, and optimization problems parameterized by natural size parameters using simultaneously polynomial time and sub-linear space. We are particularly focused on $\mathrm{2SAT}_3$ -- a restricted variant of the 2CNF Boolean (propositional) formula satisfiability problem in which each variable of a given 2CNF formula appears at most 3 times in the form of literals -- parameterized by the total number $m_{vbl}(\phi)$ of variables of each given Boolean formula $\phi$. We propose a new, practical working hypothesis, called the linear space hypothesis (LSH), which asserts that $(\mathrm{2SAT}_3,m_{vbl})$ cannot be solved in polynomial time using only ``sub-linear'' space (i.e., $m_{vbl}(x)^{\varepsilon}\, polylog(|x|)$ space for a constant $\varepsilon\in[0,1)$) on all instances $x$. Immediate consequences of LSH include $\mathrm{L}l\neq\mathrm{NL}$, $\mathrm{LOGDCFL}\neq\mathrm{LOGCFL}$, and $\mathrm{SC}\neq \mathrm{NSC}$. For our investigation, we fully utilize a key notion of ``short reductions'', under which the class $\mathrm{PsubLIN}$ of all parameterized polynomial-time sub-linear-space solvable problems is indeed closed.
翻译:我们的目标是调查非确定性对数空间( NL) 决定、 搜索和优化问题的溶性/ 溶性 。 我们特别侧重于 $\ mathrm{ 2SAT} 3$ -- 2 CNF Boolean (Proposial) 公式相对性问题的一种限制变量, 其中给定的 2CNF 公式的每个变量最多出现在3次, 形式为 literalal( literal) 。 参数由每个给定的 Boolean 公式的变量的总额 $<unk> vl} (hphy) 参数 。 我们提出了一个新的、实际的工作假设, 称之为线性空间假设 (LSH), 它声称$( mathrm{2SAT3,m{vbl} 配方公式的相对可比较性( e., $m@lvlvl_l_l_l_l_ 美元 美元) 空间的递减数 。</s>