We present a heterogeneous localization framework for solving radar global localization and pose tracking on pre-built lidar maps. To bridge the gap of sensing modalities, deep neural networks are constructed to create shared embedding space for radar scans and lidar maps. Herein learned feature embeddings are supportive for similarity measurement, thus improving map retrieval and data matching respectively. In RobotCar and MulRan datasets, we demonstrate the effectiveness of the proposed framework with the comparison to Scan Context and RaLL. In addition, the proposed pose tracking pipeline is with less neural networks compared to the original RaLL.
翻译:我们提出了一个解决雷达全球本地化问题的多样化本地化框架,并在预先建造的利达尔地图上进行跟踪。为了缩小遥感模式的差距,我们建造了深神经网络,为雷达扫描和利达尔地图创造共同嵌入空间。这里学到的特征嵌入支持了相似性测量,从而分别改善了地图检索和数据匹配。在机器人Car和MulRan数据集中,我们展示了拟议框架与扫描环境和RAL的比较的有效性。此外,与原拉利相比,拟议中的神经跟踪管道较少。