Tracking vehicles in LIDAR point clouds is a challenging task due to the sparsity of the data and the dense search space. The lack of structure in point clouds impedes the use of convolution and correlation filters usually employed in 2D object tracking. In addition, structuring point clouds is cumbersome and implies losing fine-grained information. As a result, generating proposals in 3D space is expensive and inefficient. In this paper, we leverage the dense and structured Bird Eye View (BEV) representation of LIDAR point clouds to efficiently search for objects of interest. We use an efficient Region Proposal Network and generate a small number of object proposals in 3D. Successively, we refine our selection of 3D object candidates by exploiting the similarity capability of a 3D Siamese network. We regularize the latter 3D Siamese network for shape completion to enhance its discrimination capability. Our method attempts to solve both for an efficient search space in the BEV space and a meaningful selection using 3D LIDAR point cloud. We show that the Region Proposal in the BEV outperforms Bayesian methods such as Kalman and Particle Filters in providing proposal by a significant margin and that such candidates are suitable for the 3D Siamese network. By training our method end-to-end, we outperform the previous baseline in vehicle tracking by 12% / 18% in Success and Precision when using only 16 candidates.
翻译:在LIDAR点云中跟踪飞行器是一项艰巨的任务,因为数据繁多,搜索空间密集。点云缺乏结构,妨碍了使用通常用于2D对象跟踪的变迁和关联过滤器。此外,结构点云繁琐,意味着丢失细微信息。结果,在3D空间产生建议成本高,效率低。在本文中,我们利用LIDAR点云的密集和结构化鸟眼(BEV)代表有效搜索对象。我们使用高效的区域建议网络,并在3D中生成少量目标提案。我们通过利用3D西亚星网络的类似能力改进我们选择的3D对象候选人。我们把后3D西亚星网络规范成形,以提高其歧视能力。我们试图解决在3DLIDAR点云中高效搜索空间和有意义的选择的方法。我们使用高效区域建议,在3D中,我们使用高效区域建议,在3D中产生少量目标。我们利用Kalman和Partpere 目标候选人的甄选方法,在18Lisa-Lisax 中,我们用一个显著的基线追踪方法,在前12号飞行器中,我们使用18Lisabrifor 提供适当的基线,在18候选人,我们使用适当的基线定位中,在18Lisabreal-for-breal-la 。