Quantum neural networks represent a new machine learning paradigm that has recently attracted much attention due to its potential promise. Under certain conditions, these models approximate the distribution of their dataset with a truncated Fourier series. The trigonometric nature of this fit could result in angle-embedded quantum neural networks struggling to fit the non-harmonic features in a given dataset. Moreover, the interpretability of neural networks remains a challenge. In this work, we introduce a new, interpretable class of hybrid quantum neural networks that pass the inputs of the dataset in parallel to 1) a classical multi-layered perceptron and 2) a variational quantum circuit, and then the outputs of the two are linearly combined. We observe that the quantum neural network creates a smooth sinusoidal foundation base on the training set, and then the classical perceptrons fill the non-harmonic gaps in the landscape. We demonstrate this claim on two synthetic datasets sampled from periodic distributions with added protrusions as noise. The training results indicate that the parallel hybrid network architecture could improve the solution optimality on periodic datasets with additional noise.


翻译:量子神经网络代表了一种新的机器学习模式,最近由于它的潜在前景而引起了人们的极大关注。 在某些条件下, 这些模型以短短的Fleier系列来估计数据集的分布。 这种功能的三角测量性质可能导致角嵌入的量子神经网络在某一数据集中努力适应非和谐特征。 此外,神经网络的可解释性仍然是一个挑战。 在这项工作中,我们引入了一个新的可解释的混合量子神经网络类别,该类网络通过数据集的投入,与1) 一个经典的多层透镜和2个变异量电路相平行,然后两者的输出是线性结合的。 我们观察到,量子神经网络在训练成套材料上创造了一个光滑的脊髓基,然后是古典的透视器填补了地貌中非和谐差距。 我们展示了这一说法,即从定期分布中抽样的两套合成数据集,增加了振动。 培训结果表明,平行的混合网络结构可以改进定期数据集的解决方案,增加噪音。</s>

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年4月21日
Arxiv
13+阅读 · 2021年5月25日
Arxiv
19+阅读 · 2021年2月4日
A Comprehensive Survey on Graph Neural Networks
Arxiv
13+阅读 · 2019年3月10日
Arxiv
19+阅读 · 2018年6月27日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关论文
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员