We study the transfer learning process between two linear regression problems. An important and timely special case is when the regressors are overparameterized and perfectly interpolate their training data. We examine a parameter transfer mechanism whereby a subset of the parameters of the target task solution are constrained to the values learned for a related source task. We analytically characterize the generalization error of the target task in terms of the salient factors in the transfer learning architecture, i.e., the number of examples available, the number of (free) parameters in each of the tasks, the number of parameters transferred from the source to target task, and the correlation between the two tasks. Our non-asymptotic analysis shows that the generalization error of the target task follows a two-dimensional double descent trend (with respect to the number of free parameters in each of the tasks) that is controlled by the transfer learning factors. Our analysis points to specific cases where the transfer of parameters is beneficial. Specifically, we show that transferring a specific set of parameters that generalizes well on the respective part of the source task can soften the demand on the task correlation level that is required for successful transfer learning. Moreover, we show that the usefulness of a transfer learning setting is fragile and depends on a delicate interplay among the set of transferred parameters, the relation between the tasks, and the true solution.
翻译:我们研究的是两个线性回归问题之间的转移学习过程。一个重要而及时的特殊情况是,递减者过分分计,完全相互调试其培训数据。我们检查一个参数转移机制,根据这一机制,目标任务解决方案的一组参数受相关源任务所学值的限制;我们分析地分析目标任务的一般错误,从转移学习结构的突出因素来看,即现有实例的数量、每项任务中的(自由)参数数目、从源到目标任务的参数数目以及两项任务之间的相互关系。我们的非被动分析表明,目标任务的一般错误遵循由转移学习因素控制的二维双向下降趋势(每个任务中自由参数的数目)。我们的分析指出,在转移参数有利于转让的具体情况下,即现有实例的数量、从源任务的不同部分向目标任务转移的(自由)参数数目、从源任务向目标任务转移的参数数目以及两个任务之间的相互关系。我们的非被动分析表明,目标任务的一般错误遵循由转移因素控制的二维的双重双向双向下降趋势(即每个任务的自由参数的数目)。我们的分析指出,在转移参数的脆弱程度和转移之间,我们表明,在转移的脆弱程度的参数方面,我们所了解的是,在转移的脆弱作用关系上,我们显示,在转移的脆弱的参数之间如何联系。