Although transfer learning has been shown to be successful for tasks like object and speech recognition, its applicability to question answering (QA) has yet to be well-studied. In this paper, we conduct extensive experiments to investigate the transferability of knowledge learned from a source QA dataset to a target dataset using two QA models. The performance of both models on a TOEFL listening comprehension test (Tseng et al., 2016) and MCTest (Richardson et al., 2013) is significantly improved via a simple transfer learning technique from MovieQA (Tapaswi et al., 2016). In particular, one of the models achieves the state-of-the-art on all target datasets; for the TOEFL listening comprehension test, it outperforms the previous best model by 7%. Finally, we show that transfer learning is helpful even in unsupervised scenarios when correct answers for target QA dataset examples are not available.
翻译:虽然转移学习在对象和语音识别等任务方面证明是成功的,但其对问答(QA)的适用性尚未得到很好研究。 在本文中,我们进行了广泛的实验,以调查从源QA数据集到目标数据集的可转让性,使用两个QA模型。在TOEFL听力理解测试(Tsenge等人,2016年)和MCTest(Richardson等人,2013年)这两个模型的性能都通过电影QA(Tapaswi等人,2016年)的简单传输学习技术得到显著改善。特别是,其中一个模型在所有目标数据集上达到了最新水平;对于TOEFL听力理解测试,它比前一个最佳模型高出7%。最后,我们表明,在无法提供对目标QA数据集示例的正确答案时,即使在未受监管的情况下,转让学习也是有益的。