Rankings are widely collected in various real-life scenarios, leading to the leakage of personal information such as users' preferences on videos or news. To protect rankings, existing works mainly develop privacy protection on a single ranking within a set of ranking or pairwise comparisons of a ranking under the $\epsilon$-differential privacy. This paper proposes a novel notion called $\epsilon$-ranking differential privacy for protecting ranks. We establish the connection between the Mallows model (Mallows, 1957) and the proposed $\epsilon$-ranking differential privacy. This allows us to develop a multistage ranking algorithm to generate synthetic rankings while satisfying the developed $\epsilon$-ranking differential privacy. Theoretical results regarding the utility of synthetic rankings in the downstream tasks, including the inference attack and the personalized ranking tasks, are established. For the inference attack, we quantify how $\epsilon$ affects the estimation of the true ranking based on synthetic rankings. For the personalized ranking task, we consider varying privacy preferences among users and quantify how their privacy preferences affect the consistency in estimating the optimal ranking function. Extensive numerical experiments are carried out to verify the theoretical results and demonstrate the effectiveness of the proposed synthetic ranking algorithm.
翻译:在各种现实情景中广泛收集排名,导致个人信息泄露,例如用户对视频或新闻的偏好。为了保护排名,现有作品主要在一系列排名或对等比较中,对在美元差异隐私下的排名进行单一排序进行隐私保护。本文提出了一个新颖的概念,称为“美元”的等级差异隐私以保护排名。我们建立了Mallows模式(1957年,马洛夫斯)与拟议的美元等级差异隐私之间的联系。这使我们能够开发一个多阶段排名算法,以生成合成排名,同时满足开发的美元等级差异隐私。确定了下游任务合成排名的效用的理论结果,包括推断攻击和个性化排名任务。关于推断攻击,我们量化了美元如何影响根据合成排名对真实排名的估计。关于个性化排名的任务,我们考虑用户之间的隐私偏好差异,并量化其隐私偏好如何影响估计最佳排序功能的一致性。进行的全面数字实验将展示拟议合成排序结果。