This paper studies inference in linear models with a high-dimensional parameter matrix that can be well-approximated by a ``spiked low-rank matrix.'' A spiked low-rank matrix has rank that grows slowly compared to its dimensions and nonzero singular values that diverge to infinity. We show that this framework covers a broad class of models of latent-variables which can accommodate matrix completion problems, factor models, varying coefficient models, and heterogeneous treatment effects. For inference, we apply a procedure that relies on an initial nuclear-norm penalized estimation step followed by two ordinary least squares regressions. We consider the framework of estimating incoherent eigenvectors and use a rotation argument to argue that the eigenspace estimation is asymptotically unbiased. Using this framework we show that our procedure provides asymptotically normal inference and achieves the semiparametric efficiency bound. We illustrate our framework by providing low-level conditions for its application in a treatment effects context where treatment assignment might be strongly dependent.
翻译:本文对线性模型的推论进行了研究,该线性模型具有高维参数矩阵,该模型可以与“尖锐的低位矩阵”相近。'一个急剧上升的低位矩阵的排名与其尺寸和非零单值相比缓慢增长,而其尺寸和无穷无穷无尽。我们表明,这一框架涵盖一系列广泛的潜在变量模型,这些模型可以容纳矩阵完成问题、系数模型、不同系数模型和不同处理效果。关于推论,我们应用了一个程序,该程序依赖于初步的受核规范的受限估计步骤,然后是两个普通的最小的方形回归。我们考虑了估算不相容的天体结构,并使用轮推论来论证天体空间估计是非象征性的,不带偏见的。我们利用这一框架表明,我们的程序提供了无孔正常的推论,并实现了半对称效率的约束。我们通过提供低层次的条件,在治疗效果方面适用这一框架,因为治疗任务可能极为依赖。