This paper studies inference in linear models with a high-dimensional parameter matrix that can be well-approximated by a ``spiked low-rank matrix.'' A spiked low-rank matrix has rank that grows slowly compared to its dimensions and nonzero singular values that diverge to infinity. We show that this framework covers a broad class of models of latent-variables which can accommodate matrix completion problems, factor models, varying coefficient models, and heterogeneous treatment effects. For inference, we apply a procedure that relies on an initial nuclear-norm penalized estimation step followed by two ordinary least squares regressions. We consider the framework of estimating incoherent eigenvectors and use a rotation argument to argue that the eigenspace estimation is asymptotically unbiased. Using this framework we show that our procedure provides asymptotically normal inference and achieves the semiparametric efficiency bound. We illustrate our framework by providing low-level conditions for its application in a treatment effects context where treatment assignment might be strongly dependent.


翻译:本文对线性模型的推论进行了研究,该线性模型具有高维参数矩阵,该模型可以与“尖锐的低位矩阵”相近。'一个急剧上升的低位矩阵的排名与其尺寸和非零单值相比缓慢增长,而其尺寸和无穷无穷无尽。我们表明,这一框架涵盖一系列广泛的潜在变量模型,这些模型可以容纳矩阵完成问题、系数模型、不同系数模型和不同处理效果。关于推论,我们应用了一个程序,该程序依赖于初步的受核规范的受限估计步骤,然后是两个普通的最小的方形回归。我们考虑了估算不相容的天体结构,并使用轮推论来论证天体空间估计是非象征性的,不带偏见的。我们利用这一框架表明,我们的程序提供了无孔正常的推论,并实现了半对称效率的约束。我们通过提供低层次的条件,在治疗效果方面适用这一框架,因为治疗任务可能极为依赖。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员