Multiple imputation is widely used to handle missing data. Although Rubin's combining rule is simple, it is not clear whether or not the standard multiple imputation inference is consistent when coupled with the commonly-used full sample estimators. This article establishes a unified martingale representation of multiple imputation for a wide class of asymptotically linear full sample estimators. This representation invokes the wild bootstrap inference to provide consistent variance estimation under the correct specification of the imputation models. As a motivating application, we illustrate the proposed method to estimate the average causal effect (ACE) with partially observed confounders in causal inference. Our framework applies to asymptotically linear ACE estimators, including the regression imputation, weighting, and matching estimators. We extend to the scenarios when both outcome and confounders are subject to missingness and when the data are missing not at random.
翻译:虽然Rubin的合并规则很简单,但尚不清楚标准多重估算假设与通常使用的全样本估计器是否一致。 本条为一大类非现线性全样本估计器确定了一个统一的多重估算表示法。 此表示法引用野生靴杆推论,根据估算模型的正确规格提供一致的差异估计。 作为激励程序,我们用部分观察到的因果关系计算器来说明估计平均因果效应(ACE)的拟议方法。 我们的框架适用于非现线性线性ACE估计器, 包括回归估计、 加权和匹配的估测器。 当结果和汇算器都受到缺失, 并且数据并非随机丢失时, 我们扩展到这些假设。