Knowledge graph data are prevalent in real-world applications, and knowledge graph neural networks (KGNNs) are essential techniques for knowledge graph representation learning. Although KGNN effectively models the structural information from knowledge graphs, these frameworks amplify the underlying data bias that leads to discrimination towards certain groups or individuals in resulting applications. Additionally, as existing debiasing approaches mainly focus on the entity-wise bias, eliminating the multi-hop relational bias that pervasively exists in knowledge graphs remains an open question. However, it is very challenging to eliminate relational bias due to the sparsity of the paths that generate the bias and the non-linear proximity structure of knowledge graphs. To tackle the challenges, we propose Fair-KGNN, a KGNN framework that simultaneously alleviates multi-hop bias and preserves the proximity information of entity-to-relation in knowledge graphs. The proposed framework is generalizable to mitigate the relational bias for all types of KGNN. We develop two instances of Fair-KGNN incorporating with two state-of-the-art KGNN models, RGCN and CompGCN, to mitigate gender-occupation and nationality-salary bias. The experiments carried out on three benchmark knowledge graph datasets demonstrate that the Fair-KGNN can effectively mitigate unfair situations during representation learning while preserving the predictive performance of KGNN models.


翻译:知识图表数据在现实世界应用中很普遍,知识图神经网络(KGNNs)是知识图说明学习的基本技术。虽然KGNNN有效地模拟了知识图的结构信息,但这些框架扩大了基础数据偏差,导致在产生应用过程中对某些群体或个人的歧视。此外,现有的偏差方法主要侧重于实体偏差,消除了知识图中普遍存在的多点偏差关系偏差仍然是一个未决问题。然而,由于产生偏差和非线性知识图的近距离结构的路径过于宽广,消除这种偏差非常具有挑战性。为了应对挑战,我们提议Fair-KGNNN(一个KGNNN)框架,即一个同时减轻多点偏差的偏差并保存知识图中实体对关系信息的邻近性。拟议的框架可以普遍地减轻所有类型知识图中普遍存在的多点关系偏差。我们开发了两个“公平-KGNNNN”(F)实例,与两个最先进的KGNNNN模型、RGCN和ComGCN(ComGCN)相结合。我们建议公平-KGNNNNN(F),一个框架框架框架框架可以有效减少性别偏差的模型,以缓解对等模型的偏差的实验,同时展示。

1
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
8+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年1月30日
Arxiv
26+阅读 · 2018年2月27日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
8+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员