项目名称: 电子封装完整性超声无损检测与表征
项目编号: No.51335001
项目类型: 重点项目
立项/批准年度: 2014
项目学科: 机械、仪表工业
项目作者: 徐春广
作者单位: 北京理工大学
项目金额: 350万元
中文摘要: 微电子封装已广泛应用,处于热循环工作环境,封装内温度场和热应力场也在循环变化,易产生应力疲劳;电子封装是层状非均质粘合结构,当局部疲劳应力超过材料强度极限时,导致封装内部出现微裂纹、分层和空洞等缺陷,恶性循环,加速了电子封装失效;在质量检验和电子系统检修对封装缺陷及时检测和失效预测具有重要意义。.研究的科学问题是,热循环对封装结构缺陷扩展影响规律、封装结构缺陷量化超声无损检测机理和不同形态缺陷对封装结构失效的影响规律。.研究涉及层状非均质各向异性多元介质内的非连续热传导与热应力场的相互作用、温度场和热应力场作用于不同形态缺陷扩展与耦合作用;多层非均质结构内非线性超声波动规律与不同形态缺陷对超声传播的影响、不同形态缺陷超声检测分辨能力和量化补偿和修正;不同形态缺陷对封装不同部位失效的影响规律、电子封装结构失效预测的超声特征模型和验证方法。.最终形成电子封装结构失效的超声无损检测及预测理论。
中文关键词: 电子封装;失效分析;超声;表征;无损检测
英文摘要: The electronic package which has been widely used nowadays is usually under thermal cycling environment so that the temperature field and thermal stress field changing circularly can produce the stress fatigue inside of it. A variety of defects such as micro-cracks, delamination and voids will appear while local fatigue stress is over the maximum of allowed stress because the electronic package is composed of multilayer and inhomogeneous materials. vicious cycling speeds up the failure of electronic packages. It is significantly important to check out the defects of electronic package in the process of quality control and overhaul of electronic system.. Scientific issues followed are the principle of defects growth inside electronic package under thermal cyclic environments, the principle of quantitative ultrasonic nondestructive testing of multi-morphologic defects in electronic packages and the failure pattern of electronic package caused by multi-morphologic defects development.. Research is involved with interactivity between discontinuous thermal diffusion and thermal stress field in inhomogeneous and anisotropic layered medium, and growth principle and coupling influence of different morphologic defects affected by thermal and stress filed. It also include the interaction between nonlinear ultrasonic wave propagation and multi-morphologic defects, and distinguish ability of quantitative compensation and amendment for different defects. It’s also concerned the failure rule of electronic package propelled by location of multi-morphologic defects, and ultrasonic characteristics model and verification approach about electronic package failure prediction. . The project will constitute a characterization theory of electronic package integrity by ultrasonic nondestructive testing eventually.
英文关键词: Electronic package ;Integrity;Ultrasonic ;Characterization;Nondestructive testing