** 简介:**

推荐方法构造了预测模型,以估计用户与项目交互的可能性。先前的模型在很大程度上遵循一般的监督学习范式-将每个交互视为一个单独的数据实例,并基于“信息孤岛”进行预测。但是,此类方法忽略了数据实例之间的关系,这可能导致性能欠佳,尤其是对于稀疏场景。此外,建立在单独数据实例上的模型几乎无法显示出推荐背后的原因,从而使过程难以理解。

在本教程中,我们将从图学习的角度重新审视推荐问题。可以将用于推荐的通用数据源组织成图形,例如用户-项目交互(二分图),社交网络,项目知识图(异构图)等。这种基于图的组织将孤立的数据实例连接起来,从而为利用高阶连通性带来了好处,这些高阶连通性对有意义的模式进行了编码,以进行协作过滤,基于内容的过滤,社会影响力建模和知识感知推理。结合图神经网络(GNN)的最新成功,基于图的模型已展现出成为下一代推荐系统技术的潜力。本教程对基于图的学​​习方法进行了回顾,以提出建议,特别关注GNN的最新发展和知识图谱增强的建议。通过在本教程中介绍这个新兴而有前途的领域,我们希望观众可以对空间有深入的了解和准确的见解,激发更多的想法和讨论,并促进技术的发展。

目录:

作者简介:

王翔是新加坡国立大学(NUS)计算机学院的研究员。 他获得了博士学位。 他于2019年获得国大计算机科学博士学位。他的研究兴趣包括推荐系统,信息检索和数据挖掘。 在SIGIR,KDD,WWW和AAAI等顶级会议上,他拥有20多种出版物,包括TOIS和TKDE等期刊。 他曾担任CCIS 2019的本地主席,包括SIGIR,CIKM和MM在内的顶级会议的PC成员以及TKDE和TOIS等著名期刊的定期审稿人。

成为VIP会员查看完整内容
98

相关内容

网络搜索和数据挖掘国际会议(WSDM)是关于Web上的搜索和数据挖掘研究的主要会议之一。WSDM在Web和社会Web上发布与搜索和数据挖掘相关的原始的、高质量的论文,着重于搜索和数据挖掘实用而有原则的新模型、算法设计和分析、经济影响,以及对准确性和性能的深入实验分析。 官网地址:http://dblp.uni-trier.de/db/conf/wsdm/
【WWW2018】网络表示学习Tutorial(附下载)
专知
11+阅读 · 2018年4月25日
Arxiv
35+阅读 · 2020年1月2日
Arxiv
10+阅读 · 2019年2月19日
Arxiv
23+阅读 · 2018年8月3日
Arxiv
14+阅读 · 2018年4月18日
Arxiv
12+阅读 · 2018年1月28日
VIP会员
相关VIP内容
相关论文
Arxiv
35+阅读 · 2020年1月2日
Arxiv
10+阅读 · 2019年2月19日
Arxiv
23+阅读 · 2018年8月3日
Arxiv
14+阅读 · 2018年4月18日
Arxiv
12+阅读 · 2018年1月28日
微信扫码咨询专知VIP会员