Existing learning-based methods for blind image quality assessment (BIQA) are heavily dependent on large amounts of annotated training data, and usually suffer from a severe performance degradation when encountering the domain/distribution shift problem. Thanks to the development of unsupervised domain adaptation (UDA), some works attempt to transfer the knowledge from a label-sufficient source domain to a label-free target domain under domain shift with UDA. However, it requires the coexistence of source and target data, which might be impractical for source data due to the privacy or storage issues. In this paper, we take the first step towards the source-free unsupervised domain adaptation (SFUDA) in a simple yet efficient manner for BIQA to tackle the domain shift without access to the source data. Specifically, we cast the quality assessment task as a rating distribution prediction problem. Based on the intrinsic properties of BIQA, we present a group of well-designed self-supervised objectives to guide the adaptation of the BN affine parameters towards the target domain. Among them, minimizing the prediction entropy and maximizing the batch prediction diversity aim to encourage more confident results while avoiding the trivial solution. Besides, based on the observation that the IQA rating distribution of single image follows the Gaussian distribution, we apply Gaussian regularization to the predicted rating distribution to make it more consistent with the nature of human scoring. Extensive experimental results under cross-domain scenarios demonstrated the effectiveness of our proposed method to mitigate the domain shift.
翻译:现有盲人图像质量评估(BIQA)的基于学习的现有方法严重依赖大量附加说明的培训数据,通常在遇到域/分布转移问题时出现严重的性能退化。由于开发了不受监督的域适应(UDA),有些工作试图将知识从标签上无源域转移到与UDA交接的无标签目标域。然而,它要求源和目标数据共存,这些数据可能由于隐私或储存问题而对源数据不切实际。在本文件中,我们迈出第一步,以简单而高效的方式实现无源、不受监督的域适应(SFUDA),使BIQA处理域转移而无需获得源数据。具体地说,我们把质量评估任务作为一个评级分配预测问题。根据BIQA的内在特性,我们提出了一套设计完善的自我超强的目标,以指导将BN 准值参数调整到目标域。其中,我们以简单化的域域域预测为目的,最大限度地实现无源域域域适应(SFUDA)预测多样性目标,以便更有信心地降低I的跨域域域域内评级分配结果,同时避免高层次分配。此外,我们提出的高级分配标准等级分配办法,我们采用单一级分配的标分配办法。