Unsupervised domain adaptation (UDA) for semantic segmentation addresses the cross-domain problem with fine source domain labels. However, the acquisition of semantic labels has always been a difficult step, many scenarios only have weak labels (e.g. bounding boxes). For scenarios where weak supervision and cross-domain problems coexist, this paper defines a new task: unsupervised domain adaptation based on weak source domain labels (WUDA). To explore solutions for this task, this paper proposes two intuitive frameworks: 1) Perform weakly supervised semantic segmentation in the source domain, and then implement unsupervised domain adaptation; 2) Train an object detection model using source domain data, then detect objects in the target domain and implement weakly supervised semantic segmentation. We observe that the two frameworks behave differently when the datasets change. Therefore, we construct dataset pairs with a wide range of domain shifts and conduct extended experiments to analyze the impact of different domain shifts on the two frameworks. In addition, to measure domain shift, we apply the metric representation shift to urban landscape image segmentation for the first time. The source code and constructed datasets are available at \url{https://github.com/bupt-ai-cz/WUDA}.
翻译:用于语义化的无监管域别调整(UDA) 用于语义化的无监管域别调整(UDA), 解决跨域问题, 并使用精密源域名标签。 然而, 获取语义标签始终是一个困难的步骤, 许多设想方案仅具有薄弱的标签( 如捆绑框) 。 对于监管不力和跨域问题共存的情景, 本文定义了一项新任务: 基于薄弱源域名标签( WUDA) 的不受监管域别调整( UDA) 。 为了探索这项任务的解决方案, 本文建议两个直观框架:(1) 在源域内实施监管不力的语义分类, 然后实施不受监管的域名调整;(2) 利用源域数据培训对象探测模型, 然后在目标域内检测对象, 实施监管不力的语义分类。 我们注意到, 当数据设置改变时, 两种框架的行为不同。 因此, 我们构建了具有广泛域变换的数据集, 并进行扩展实验, 分析不同域变对两个框架的影响。 此外, 我们测量域变的域内, 我们第一次将矩阵显示图示图示/Wsubs。