Unsupervised Domain Adaptation (UDA) methods aim to transfer knowledge from a labeled source domain to an unlabeled target domain. UDA has been extensively studied in the computer vision literature. Deep networks have been shown to be vulnerable to adversarial attacks. However, very little focus is devoted to improving the adversarial robustness of deep UDA models, causing serious concerns about model reliability. Adversarial Training (AT) has been considered to be the most successful adversarial defense approach. Nevertheless, conventional AT requires ground-truth labels to generate adversarial examples and train models, which limits its effectiveness in the unlabeled target domain. In this paper, we aim to explore AT to robustify UDA models: How to enhance the unlabeled data robustness via AT while learning domain-invariant features for UDA? To answer this question, we provide a systematic study into multiple AT variants that can potentially be applied to UDA. Moreover, we propose a novel Adversarially Robust Training method for UDA accordingly, referred to as ARTUDA. Extensive experiments on multiple adversarial attacks and UDA benchmarks show that ARTUDA consistently improves the adversarial robustness of UDA models. Code is available at https://github.com/shaoyuanlo/ARTUDA


翻译:未经监督的域适应(UDA)方法旨在将知识从标签源域向未标签的目标域转移。UDA在计算机视觉文献中已经进行了广泛的研究。深网络已经证明很容易受到对抗性攻击。但是,很少重视提高深度UDA模型的对抗性强力,引起对模型可靠性的严重关切。反向培训(AT)被认为是最成功的对抗性防御方法。然而,常规AT需要地对地真理标签,以生成对抗性实例和培训模型,这限制了其在未标签目标域的效力。在本文件中,我们旨在探索ATA以强化UDA模型:如何在学习UDA的域反动特性的同时,通过AT加强未标记的数据的稳健性?为回答这一问题,我们为可能适用于UDA的多种AT变体提供了系统研究。此外,我们建议为UDA提出一种新型的Aversari tyally Robuste培训方法,因此称为ARUDA。关于多次对抗性攻击的广泛实验和UDA/AAARAUDA准则的可靠性标准表明,UDA/AADA/ADA/ADUDUDA的对抗性准则是不断完善的。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
13+阅读 · 2021年3月29日
Transfer Adaptation Learning: A Decade Survey
Arxiv
37+阅读 · 2019年3月12日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员